141 research outputs found

    Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)

    Get PDF
    Abstract. The most recent and significant transformations of European landscapes have occurred as a consequence of a series of diffused, varied and often connected phenomena: urban growth and sprawl, agricultural intensification in the most suitable areas and agricultural abandonment in marginal areas. These phenomena can affect dramatically ecosystems' structure and functioning, since certain modifications cause landscape fragmentation while others tend to increase homogeneity. Thus, a thorough comprehension of the evolution trends of landscapes, in particular those linked to urban-rural relations, is crucial for a sustainable landscape planning. In this framework, the main objectives of the present paper are: (a) to investigate Land Use/Land Cover (LULC) transformations and dynamics that occurred over the period 1955–2006 in the municipality of Serra San Bruno (Calabria, Italy), an area particularly representative of the Mediterranean mountainous landscape; (b) to compare the settlement growth with the urban planning tools in charge in the study area; (c) to examine the relationship between urban–rural gradient, landscape metrics, demographic and physical variables; (d) to investigate the evolution of urban–rural gradient composition and configuration along significant axes of landscape changes. Data with a high level of detail (minimum mapping unit 0.2 ha) were obtained through the digitisation of historical aerial photographs and digital orthophotos identifying LULC classes according to the Corine Land Cover legend. The investigated period was divided into four significant time intervals, which were specifically analysed to detect LULC changes. Differently from previous studies, in the present research the spatio-temporal analysis of urban–rural gradient was performed through three subsequent steps: (1) kernel density analysis of settlements; (2) analysis of landscape structure by means of metrics calculated using a moving window method; (3) analysis of composition and configuration of the urban–rural gradient within three landscape profiles located along significant axes of LULC change. The use of thematic overlays and transition matrices enabled a precise identification of the LULC changes that had taken place over the examined period. As a result, a detailed description and mapping of the landscape dynamics were obtained. Furthermore, landscape profiling technique, using continuous data, allowed an innovative and valuable approach for analysing and interpreting urban–rural gradient structure over space and time

    Towards a Decision Support Tool for Assessing, Managing and Mitigating Seismic Risk of Electric Power Networks

    Get PDF
    Recent seismic event worldwide proved how fragile the electric power system can be to seismic events. Decision Support Systems (DSSs) could have a critical role in assessing the seismic risk of electric power networks and in enabling asset managers to test the effectiveness of alternative mitigation strategies and investments on resilience. This paper exemplifies the potentialities of CIPCast, a DSS recently created in the framework of the EU-funded project CIPRNet, to perform such tasks. CIPCast enables to perform risk assessment for Critical Infrastructures (CI) when subjected to different natural hazards, including earthquakes. An ad-hoc customization of CIPCast for the seismic risk analysis and management of electric power networks is featured in this paper. The international literature describes effective and sound efforts towards the creation of software platforms and frameworks for the assessment of seismic risk of electric power networks. None of them, unfortunately, achieved the goal of creating a user-friendly and ready available DDS to be used by asset managers, local authorities and civil protection departments. Towards that and building on the international literature, the paper describes metrics and methods to be integrated within CIPCast for assessing the earthquake-induced physical and functional impacts of the electric power network at component and system level. The paper describes also how CIPCast can inform the service restoration process

    PO-485 Low abundance circulating proteins in giant cell tumours of bone

    Get PDF
    Introduction Circulating low-abundance proteins/fragments generating from tumour cells and tissues, represent the most important source of cancer biomarkers useful for early diagnosis and prognosis. Giant cell tumour of bone (GCT) is a benign neoplasm occurring in the long bone and in the axial skeleton of young adults. Approximately 5% of GCT develop pulmonary metastases. Although many biomarkers have been proposed, identification of circulating low abundance molecules may be useful to predict metastasis with a non invasive method. Material and methods The hydrogel nanoparticles technique followed by mass spectrometry was used to detect low molecular weight serum proteins or protein fragments in serum of 20 GCT patients with different clinical course and in 10 healthy sera used as control. The most representative low-abundant de novo or differentially abundant proteins were submitted to String database in order to define protein-protein interaction network. Cluster analysis was performed to identify prognostic groups of patients with similar abundance of proteins that significantly discriminate between the groups. Results and discussions For the 25 low-abundant de novo or differentially abundant proteins identified, we recognised that the top interconnected pathways included protein activation cascade, wound healing, blood coagulation, cell-substrate adhesion. Proteoma cluster analysis separated metastasis-free from metastatic GCT patients in two well-defined groups where serum levels of signalling transduction mediators and regulators of kinase activity presented a high discriminatory power. Increased expression of proteins STAT5B, GRB2 and OXSR1 was related to a higher probability of metastasis. Conclusion In conclusion, using a no invasive technique, we identified differentially abundant serum biomarkers, also providing prognostic information in patients with GCT of bone. Future studies are ongoing to establish the interplay between these biomarkers in order to fully understand the mechanism involved in tumour development and to focus on the planning of tailored therapies that should be more effective and less toxic

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≀0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays

    Get PDF
    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have been functionalized with the hydrogen bonding motifs
    • 

    corecore